Simplify Piezometer Installations, Lower Costs
and Get Better results with

Fully Grouted Piezometers

P. Erik Mikkelsen, P.E.
Consulting Engineer
GeoMetron Inc PS
Bellevue, WA, USA

Univ. of Florida Short Course, March 19, 2007

Open Standpipe Piezometer

- Obviously low material costs, but ……
 - Time consuming recording
 - Time-lag potential
 - Minimal and un-timely observations

- Installation sensitivity/problems
 - time consuming backfill procedures
 - complicated backfill
 - risk of incomplete backfill
VW Piezometer Sensors

- **Advantages**
 - instant reading, not influenced by observer
 - can be fully grouted
 - best suited for automated readings
 - calibration not influenced by lead length
 - high zero stability (minimal drift for decades)

- **Disadvantages**
 - vulnerable to over-voltage, need protection
 - calibration factors, barometric influence
 - can be damaged by over-pressure

Vibrating Wire Sensor

(After Slope Indicator)
Fully grouted piezometer

- Why grout? ...Eliminates complexity
- Why does it work? ...It is like saturated clay!
- Works like piezo sensor pushed into clay
- Mix design? ...Design based on cement content.
- Grout properties (new research results)

Mandrel pushed-in VWP in soft clay
Casagrande missed the point that pressure sensors are different!
Darcy’s Law for Flow

\[\Delta q = i \times k \times A = \Delta p/L \times k \times A \]

- \(\Delta q \): flow volume
- \(i \): gradient
- \(\Delta p \): pressure differential
- \(L \): "flow path" distance
- \(k \): coefficient of permeability
- \(A \): cross-sectional area of "flow path"

Short path (2\(^{\prime}\)): (10 psi / 2 in.) \(\times 0.000,001 \) = 0.000,013 lbs/sec = 0.36 gpm
Long path (15 feet): (10 psi / 180 in.) \(\times 0.000,100 \) = 0.000,140 lbs/sec = 0.39 gpm

<table>
<thead>
<tr>
<th>Grout Type</th>
<th>Characteristics</th>
<th>(k) (cm/sec)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neat cement</td>
<td>w/c = 0.53, (\gamma = 112) pcf</td>
<td>(10^{-7})</td>
<td>Baroid</td>
</tr>
<tr>
<td>Bentonite chips</td>
<td>hydrated</td>
<td>(10^{-8})</td>
<td>Baroid</td>
</tr>
<tr>
<td>Bentonite slurry</td>
<td>6 % solids</td>
<td>(10^{-5})</td>
<td>Baroid</td>
</tr>
<tr>
<td>Bentonite slurry</td>
<td>20 % solids</td>
<td>(10^{-8})</td>
<td>Baroid</td>
</tr>
<tr>
<td>Cement-bentonite</td>
<td>water/solids = 4 to 1</td>
<td>(10^{-6})</td>
<td>Vaughan, 1969</td>
</tr>
<tr>
<td>Cement-bentonite</td>
<td>w : c : b = 4 : 1 : 1</td>
<td>(5 \times 10^{+4})</td>
<td>Vaughan, 1973</td>
</tr>
</tbody>
</table>

Table 2. Permeability of some grouts
Cement-Bentonite Grout

- Mix ratio by weight - 2.5 water : 1 cem : 0.37 bent + or – according to consistency
- Mix water and cement first
- Add bentonite slowly, high agitation, make grout creamy, yet pumpable (Marsh # 50-60 sec)
- Density - 80 pcf
- Water Content - >100 %
- Modulus - about 10,000 psi
- 30-day QU strength - 50 to 100 psi
- Permeability – k = 1.0E-06 cm/sec.
VWP in Grout, 200mm thickness, 288 days curing

Pressure Head in Feet vs. Lapsed Time in Minutes
Normalized Cement-Bentonite Grout Properties
(Marsh Number = 50 to 60 sec.)

Normalized Value of Density, Void Ratio & Strength

- Density (pcf) = 63.3 x
- Void Ratio = 4 x
- UCC strength = 240 x
- k (cm/sec) = 1.0E-7 x

Permeability vs. Confining Pressure
29 Day Strength

- Void ratio
 - 0.23
 - 0.34
 - 0.43
 - 0.56
 - 0.68

Water-Cement Ratio - w/c

- Normalized Value of Permeability - k

- Normalized Value of Density, Void Ratio & Strength

- Water-Cement Ratio - w/c
Fully grouted multi-level VWPs

Barometric Pressure and Rainfall, Oregon Coast

Rainfall per 12 hours, inches

10/1/99 10/31/99 12/1/99 12/31/99 1/31/00 3/1/00 4/1/00
0:00 12:00 0:00 12:00 0:00 12:00 0:00

1999 / 2000

millibars or cm of H2O

0 0.6 1.2 1.8 2.4 3 3.6 4.2 4.8
Barometric Influence or Not?

VWP - Altitude Correction
Fully Grouted Piezometer Project

Raw data for fully grouted VWP

<table>
<thead>
<tr>
<th>Profile 2</th>
<th>Piezometer</th>
<th>Date</th>
<th>Frequency Hz</th>
<th>Temp.</th>
<th>C</th>
<th>A</th>
<th>B</th>
<th>Pressure kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>17488</td>
<td>37005</td>
<td>3007.58</td>
<td>15.1</td>
<td>-0.003129</td>
<td>0.076624</td>
<td>1.043</td>
<td>36.5</td>
<td></td>
</tr>
<tr>
<td>17488</td>
<td>37089</td>
<td>3099.58</td>
<td>10.5</td>
<td>-0.003129</td>
<td>0.076624</td>
<td>1.043</td>
<td>15.5</td>
<td></td>
</tr>
<tr>
<td>17488</td>
<td>37099</td>
<td>3122.46</td>
<td>10.4</td>
<td>-0.003129</td>
<td>0.076624</td>
<td>1.043</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td>17488</td>
<td>37072</td>
<td>3151.8</td>
<td>10.6</td>
<td>-0.003129</td>
<td>0.076624</td>
<td>1.043</td>
<td>22.5</td>
<td></td>
</tr>
<tr>
<td>17488</td>
<td>37082</td>
<td>3171.45</td>
<td>10.7</td>
<td>-0.003129</td>
<td>0.076624</td>
<td>1.043</td>
<td>37.0</td>
<td></td>
</tr>
<tr>
<td>17488</td>
<td>37085</td>
<td>3178.52</td>
<td>10.7</td>
<td>-0.003129</td>
<td>0.076624</td>
<td>1.043</td>
<td>49.0</td>
<td></td>
</tr>
<tr>
<td>17488</td>
<td>37090</td>
<td>3191.31</td>
<td>10.9</td>
<td>-0.003129</td>
<td>0.076624</td>
<td>1.043</td>
<td>44.3</td>
<td></td>
</tr>
<tr>
<td>17488</td>
<td>37093</td>
<td>3184.48</td>
<td>10.9</td>
<td>-0.003129</td>
<td>0.076624</td>
<td>1.043</td>
<td>45.6</td>
<td></td>
</tr>
<tr>
<td>17488</td>
<td>37099</td>
<td>3188.71</td>
<td>11.1</td>
<td>-0.003129</td>
<td>0.076624</td>
<td>1.043</td>
<td>49.6</td>
<td></td>
</tr>
<tr>
<td>17488</td>
<td>37102</td>
<td>3189.76</td>
<td>11.1</td>
<td>-0.003129</td>
<td>0.076624</td>
<td>1.043</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>17488</td>
<td>37105</td>
<td>3180.43</td>
<td>11.2</td>
<td>-0.003129</td>
<td>0.076624</td>
<td>1.043</td>
<td>51.1</td>
<td></td>
</tr>
<tr>
<td>17488</td>
<td>37111</td>
<td>3191.49</td>
<td>11.3</td>
<td>-0.003129</td>
<td>0.076624</td>
<td>1.043</td>
<td>51.8</td>
<td></td>
</tr>
<tr>
<td>17488</td>
<td>37118</td>
<td>3191.75</td>
<td>11.5</td>
<td>-0.003129</td>
<td>0.076624</td>
<td>1.043</td>
<td>52.0</td>
<td></td>
</tr>
<tr>
<td>17488</td>
<td>37141</td>
<td>3191.22</td>
<td>12.1</td>
<td>-0.003129</td>
<td>0.076624</td>
<td>1.043</td>
<td>51.6</td>
<td></td>
</tr>
<tr>
<td>17488</td>
<td>37161</td>
<td>3188.91</td>
<td>12.8</td>
<td>-0.003129</td>
<td>0.076624</td>
<td>1.043</td>
<td>49.9</td>
<td></td>
</tr>
<tr>
<td>17488</td>
<td>37194</td>
<td>3193.15</td>
<td>13.2</td>
<td>-0.003129</td>
<td>0.076624</td>
<td>1.043</td>
<td>45.6</td>
<td></td>
</tr>
<tr>
<td>17488</td>
<td>37244</td>
<td>3173.68</td>
<td>13.9</td>
<td>-0.003129</td>
<td>0.076624</td>
<td>1.043</td>
<td>38.6</td>
<td></td>
</tr>
<tr>
<td>17488</td>
<td>37285</td>
<td>3180.23</td>
<td>13.9</td>
<td>-0.003129</td>
<td>0.076624</td>
<td>1.043</td>
<td>33.1</td>
<td></td>
</tr>
</tbody>
</table>
C-B grout: 55 gal. paddle mixer

400-m deep M-L VWP installation
Conclusions

- Cement-bentonite grout works!
- Simpler and faster installation
- Less chance of failed installation
- Works as a high air-entry filter
- It always starts out fully saturated
- Eliminates risk of bentonite “activity”
- Applicable to both boreholes and embankments