Resistance
Temperature Sensor
92600099

This equipment should be installed, maintained, and operated by technically qualified personnel. Any errors or omissions in data, or the interpretation of data, are not the responsibility of Slope Indicator Company. The information herein is subject to change without notification.

This document contains information that is proprietary to Slope Indicator company and is subject to return upon request. It is transmitted for the sole purpose of aiding the transaction of business between Slope Indicator Company and the recipient. All information, data, designs, and drawings contained herein are proprietary to and the property of Slope Indicator Company, and may not be reproduced or copied in any form, by photocopy or any other means, including disclosure to outside parties, directly or indirectly, without permission in writing from Slope Indicator Company.
Contents

Introduction 1
Installation Suggestions 2
Taking Readings 3
Diagnostics 4
Introduction

Applications
Resistance temperature sensors are used to monitor the heat of hydration in mass concrete.

Operation
The temperature sensor consists of a stainless steel body, an RTD or thermistor inside the body, and a signal cable.

The resistance of the RTD or thermistor varies with temperature. The readout unit or data logger converts the resistance reading to degrees C.
Installation Suggestions

Sensor

- When a temperature sensor is mounted in a particularly vulnerable position, consider spraying the area with marker paint, covering the gauge with a protective wire mesh, or placing some non-structural steel to protect the gauge. Damage is most likely to occur when the reinforcing gauge is lifted and then placed and also when the tremie pipe places the cement.

Signal Cable

- Mark cables before installation to help you identify the sensor and cable at the end of the installation process. Add extra identification marks at locations where the cable is vulnerable or must be spliced. This precaution may make it possible to reconnect a bundle of broken cables. Also add extra marks toward the end of the cable, where excess cable length may be cut off.

- Start with the sensor farthest from the readout station and run the cable along the reinforcement, picking up cables from other sensors along the way. Use nylon cable ties to strap the cables to the reinforcement at least every 300 to 400 mm.

- Run cables along the underside of any reinforcements gain some protection from the poured concrete and the use of vibrators. Never run cables diagonally or unsupported through the reinforcement.

- Leave sufficient slack in the cables where there is likely to be any movement in the reinforcement. Check that slack cable cannot be damaged.

- Protect the cables where they exit the concrete with a short length of conduit.
Taking Readings

VW Data Recorder

1. Connect signal cable to the data recorder:

<table>
<thead>
<tr>
<th>Binding Posts</th>
<th>Cable Part Numbers and Color Coding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50613524</td>
</tr>
<tr>
<td>RTD/Therm</td>
<td>Blue</td>
</tr>
<tr>
<td>RTD/Therm</td>
<td>White & Blue</td>
</tr>
</tbody>
</table>

2. Choose Hz + RTD -or- Hz + Thermistor.

3. Press the Enter key (the sweep range has no effect).

4. The recorder displays a RTD or Thermistor reading in degrees C. The Hz reading is not valid and should be ignored.

DataMate MP

1. Connect the DataMate to the sensor (see connection table below).

<table>
<thead>
<tr>
<th>Terminals on Bare Wire Adaptor</th>
<th>Cable Part Numbers and Color Coding</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>50613524</td>
<td>52602320</td>
</tr>
<tr>
<td>7</td>
<td>White & Blue</td>
<td>Black</td>
</tr>
</tbody>
</table>

3. Scroll through the list to find “RTD” or “Thermistor.”

4. Press to excite the sensor and display a reading in degrees C.

VWP Indicator

1. The VWP Indicator reads only RTDs. Use jumper #52611950, which is supplied with the indicator. Connect the clips of the jumper to signal cable from the sensor, as shown in the table below.

<table>
<thead>
<tr>
<th>Clips</th>
<th>Cable Part Numbers and Color Coding</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>50613524</td>
<td>52602320</td>
</tr>
<tr>
<td>Black</td>
<td>White & Blue</td>
<td>Black</td>
</tr>
</tbody>
</table>

2. Read the RTD: Select °C with the Data key.

CR10 Data Logger

See tech-notes for the CR10 on Slope Indicator’s website.
Diagnostics

No Reading
Set your handheld multimeter to a low-ohm range (5k ohm).
• Measure the resistance between the RTD/Thermistor wires (blue and white). Thermistors should read about 3000 ohms. RTDs should read about 2000 ohms. If the reading is very high or infinite, the temperature device is damaged (or the cable is severed). If the reading is very low, the cable may have been crushed and a short has developed.

Unstable Reading
Set your handheld multimeter to a high range (10 or 20 M ohm).
• Measure the resistance between any of the colored wires and the drain (shield) wire. The reading should be infinite or out of range.